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Motivations



Cloud-Centric Machine Learning



The model lives in the cloud
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Make predictions in the cloud
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Gather training data in the cloud

X
(eo‘\)eg
o

=

training
data



And make the models better
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Why On-Device Learning?

» explosive growth in the volume of data on devices

» growing computation and storage capacity of devices
» privacy leakage, long delay
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New Framework: Federated Learning



Federated learning
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Federated learning

/8

@

2. Selected devices
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Federated learning
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Federated learning
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Federated learning
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Federated Learning over Wireless Networks

» Goal: train a shared global model via wireless federated
computation

central BS

. Uplink: locally computed $
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Q: How to efficiently aggregate models over wireless networks?
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Q: How to efficiently aggregate models over wireless networks?

A: Via over-the-air computation.



Simple lllustration of Over-the-Air
Computation

Communication Computation Over-the-air Computation
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The Training Procedures

» Challenges
e possible signal distortion in wireless communications

e slow convergence because a large number of iterations is
required to train a satisfactory model



The Training Procedures

» Challenges
e possible signal distortion in wireless communications
e slow convergence because a large number of iterations is

required to train a satisfactory model

» Our Work

e propose a difference-of-convex-functions (DC) algorithm to
minimize signal distortion

e fasten model convergence by adopting the canonical
Newton's method for local model updates
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Problem Formulation



Notations
» One N-antenna base station (BS), K single-antenna mobile
devices
» Cis the set of all devices
» the received signal at the BS after concurrent transmissions

Yy = Z hibps, +n
kel
e ;. the representative signal; by: allocated power
e hy: the channel vector between the k-th device and the BS
e n~CN (O,O'QI)Z the noise vector



Notations

» One N-antenna base station (BS), K single-antenna mobile
devices

» Cis the set of all devices
» the received signal at the BS after concurrent transmissions

Yy = Z hibps, +n
kek
e ;. the representative signal; by: allocated power
e hy: the channel vector between the k-th device and the BS

e n~CN (O,O'QI)Z the noise vector
» the signal after decoding at the BS

~ 1 H 1 H 1 H
W=—a y=—a hibis, + —a ™ n
Vi Vi ;C Vi
e 7): a normalizing factor
e a: the receive beamforming vector at the BS



Problem Formulation

» The distortion of decoded signal w and ideal signal
W = ) ek Sk is measured by mean-square-error (MSE)

MSE(Ww, w;a) = E (|]w — w|?)
2
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Problem Formulation

» Goal: find the optimal receive beamforming vector a to
minimize MSE

» Problem Formulation

minimize (m M)
ax ,

acch Kk [|atihy|?

and it can be recast as

minimize  |la|?
acCN

subject to HaHh,kH2 > 1,Vk e K.



Problem Formulation

» Goal: find the optimal receive beamforming vector a to
minimize MSE

» Problem Formulation

minimize (m M)
ax ,

acch ket atthy
and it can be recast as

minimize  |la|?
acCN

subject to HaHh,kH2 > 1,Vk e K.

» Challenges: a nonconvex quadratically constrained quadratic
programming (QCQP)
» Proposal: low-rank optimization after matrix lifting
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Proposed Algorithm



Low-Rank Optimization

» define A = aa'’, A = 0 with rank(A) =1
» Problem Rewrite
minimize  Tr(A)
AcCNXN
subject to Tr(AHy) > 1,Vk € K
A > 0,rank(A) =1
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» define A = aa'’, A = 0 with rank(A) =1
» Problem Rewrite

minimize  Tr(A)
AcCNxXN

subject to Tr(AHy) > 1,Vk € K
A > 0,rank(A) =1

» Challenges: the nonconvex rank-one constraint
» Proposal: a DC representation for the rank-one constraint



DC Reformulation

» DC Representation
rank(A) =1 <= Tr(A) — ||A]2 =0, Tr(A) >0
» DC Reformulation
minimize Tr(A) + 8 (Tr(A) — ||A]|2)

AECNXN

subject to Tr(AHy) > 1,Vk € K
A>0,Tr(A) >0



DC Algorithm

» At iteration ¢, A’ is obtained by solving subproblem

minimize (1 + §) Tr(A) — 6 (0] A", , A)

AeCNxN
subject to  Tr(AH) > 1,Vke K ;

A>0,Tr(A) >0

where 0 || A?|, is one of subgradients of the spectral norm at
point A’, and (-, -)is the inner product of two matrices defined
as (X,Y) = Real (Tr (X"Y))



DC Algorithm

» At iteration ¢, A’ is obtained by solving subproblem

minimize (1 + §) Tr(A) — 6 (0] A", , A)

AeCNxN
subject to  Tr(AH) > 1,Vke K ;

A>0,Tr(A) >0

where 0 || A?|, is one of subgradients of the spectral norm at
point A’, and (-, -)is the inner product of two matrices defined
as (X,Y) = Real (Tr (X"Y))

» Repeat the above DC algorithm until convergence for a
feasible A with exact rank-one; then a is obtained via singular
value decomposition (SVD).
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Simulation Results



A Quick Review

» Challenges

e possible signal distortion in wireless communications

e slow convergence because a large number of iterations is
required to train a satisfactory model

» Our Work

e propose a difference-of-convex-functions (DC) algorithm to
minimize signal distortion

e fasten model convergence by adopting the canonical
Newton's method for local model updates



Simulation Results

» K =5, results averaged over 100 independently generated

channel realizations SDR|Sidiropoulos et
+DC al.'06]: convexify the
05\ o BB nonconvex QCQP by

simply dropping the
rank-one constraint
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Remark

e The proposed DC algorithm achieves nearly-optimal
performance on minimizing MSE.




Simulation Results

» Classification experiment over CIFAR10 dataset
e train a softmax classifier via the distributed stochastic
gradient descent (SGD)
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Remark
e The aggregation errors significantly degrade performance.




Simulation Results

» Classification experiment over CIFAR10 dataset
e train a softmax classifier via the canonical Newton's method
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Remark

e The Newton's method significantly fasten the convergence of
trained model and is much more robust to the aggregation errors.




Outline

Summary



Concluding Remarks

» We propose a second-order based model update method for
on-device federated learning.

» We develop a low-rank approach to support over-the-air
computation, followed by a novel DC algorithm.

» We demonstrate the connection between aggregation errors
and model convergence behaviors through experiments, i.e.,
large aggregation error = slow convergence

» Second order methods benefit from two aspects:
1. reduce the communication burden because much less
communication rounds are required for convergence

2. be much more robust to aggregation errors therefore
errors result in very limited performance loss
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