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Cloud-Centric Machine Learning



The model lives in the cloud



We train models in the cloud





Make predictions in the cloud



Gather training data in the cloud



And make the models better



Why On-Device Learning?

I explosive growth in the volume of data on devices

I growing computation and storage capacity of devices

I privacy leakage, long delay

I . . .

New Framework: Federated Learning
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Federated Learning over Wireless Networks

I Goal: train a shared global model via wireless federated
computation

device 1
...

device 2 device K

central BS

Uplink: locally computed 
model update

Downlink: 
aggregated model

Q: How to efficiently aggregate models over wireless networks?

A: Via over-the-air computation.
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Simple Illustration of Over-the-Air
Computation

slot1 slot2 slot3

Communication Computation

slot1

Over-the-air	Computation



The Training Procedures

I Challenges

• possible signal distortion in wireless communications

• slow convergence because a large number of iterations is
required to train a satisfactory model

I Our Work

• propose a difference-of-convex-functions (DC) algorithm to
minimize signal distortion

• fasten model convergence by adopting the canonical
Newton’s method for local model updates
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Notations
I One N -antenna base station (BS), K single-antenna mobile

devices

I K is the set of all devices

I the received signal at the BS after concurrent transmissions

y =
∑
k∈K

hkbksk + n

• sk: the representative signal; bk: allocated power
• hk: the channel vector between the k-th device and the BS
• n ∼ CN

(
0, σ2I

)
: the noise vector

I the signal after decoding at the BS

ŵ =
1
√
η
aHy =

1
√
η
aH
∑
k∈K

hkbksk +
1
√
η
aHn

• η: a normalizing factor
• a: the receive beamforming vector at the BS
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Problem Formulation

I The distortion of decoded signal ŵ and ideal signal
w =

∑
k∈K sk is measured by mean-square-error (MSE)

MSE(ŵ,w;a) = E (|ŵ − w|2)
=

∑
k

∣∣aHhkbk/
√
η − 1

∣∣2 + σ2‖a‖2/η

which can be further simplified as

MSE(ŵ,w;a) =
‖a‖2σ2

η
=

‖a‖2σ2

P0mink∈K ‖aHhk‖2

by setting bk =
√
η
(aHhk)

H

‖aHhk‖2
and η = P0mink∈K

∥∥aHhk

∥∥2.



Problem Formulation

I Goal: find the optimal receive beamforming vector a to
minimize MSE

I Problem Formulation

minimize
a∈CN

(
max
k∈K

‖a‖2

‖aHhk‖2

)
,

and it can be recast as

minimize
a∈CN

‖a‖2

subject to
∥∥aHhk

∥∥2 ≥ 1,∀k ∈ K.

I Challenges: a nonconvex quadratically constrained quadratic
programming (QCQP)

I Proposal: low-rank optimization after matrix lifting
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Low-Rank Optimization

I define A = aaH ,A � 0 with rank(A) = 1

I Problem Rewrite

minimize
A∈CN×N

Tr(A)

subject to Tr (AHk) ≥ 1,∀k ∈ K
A � 0, rank(A) = 1

I Challenges: the nonconvex rank-one constraint

I Proposal: a DC representation for the rank-one constraint
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DC Reformulation

I DC Representation

rank(A) = 1⇐⇒ Tr(A)− ‖A‖2 = 0, Tr(A) > 0

I DC Reformulation

minimize
A∈CN×N

Tr(A) + β (Tr(A)− ‖A‖2)
subject to Tr (AHk) ≥ 1,∀k ∈ K

A � 0,Tr(A) > 0



DC Algorithm

I At iteration t, At is obtained by solving subproblem

minimize
A∈CN×N

(1 + β) Tr(A)− β 〈∂ ‖At‖2 ,A〉

subject to Tr (AHk) ≥ 1, ∀k ∈ K
A � 0,Tr(A) > 0

,

where ∂ ‖At‖2 is one of subgradients of the spectral norm at
point At, and 〈·, ·〉is the inner product of two matrices defined
as 〈X,Y 〉 = Real

(
Tr
(
XHY

))

I Repeat the above DC algorithm until convergence for a
feasible A with exact rank-one; then a is obtained via singular
value decomposition (SVD).
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A Quick Review

I Challenges

• possible signal distortion in wireless communications

• slow convergence because a large number of iterations is
required to train a satisfactory model

I Our Work

• propose a difference-of-convex-functions (DC) algorithm to
minimize signal distortion

• fasten model convergence by adopting the canonical
Newton’s method for local model updates



Simulation Results
I K = 5, results averaged over 100 independently generated

channel realizations
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Remark
• The proposed DC algorithm achieves nearly-optimal

performance on minimizing MSE.



Simulation Results
I Classification experiment over CIFAR10 dataset

• train a softmax classifier via the distributed stochastic
gradient descent (SGD)
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Benchmark: ideal
transmission with no
aggregation errors, i.e.,
MSE = 0dB

Remark
• The aggregation errors significantly degrade performance.



Simulation Results
I Classification experiment over CIFAR10 dataset

• train a softmax classifier via the canonical Newton’s method
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Remark

• The Newton’s method significantly fasten the convergence of
trained model and is much more robust to the aggregation errors.
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Concluding Remarks

I We propose a second-order based model update method for
on-device federated learning.

I We develop a low-rank approach to support over-the-air
computation, followed by a novel DC algorithm.

I We demonstrate the connection between aggregation errors
and model convergence behaviors through experiments, i.e.,
large aggregation error =⇒ slow convergence

I Second order methods benefit from two aspects:

1. reduce the communication burden because much less
communication rounds are required for convergence

2. be much more robust to aggregation errors therefore
errors result in very limited performance loss



Thanks !
huasheng@shanghaitech.edu.cn
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